Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nat Cancer ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448522

RESUMO

Gemcitabine is a potent inhibitor of DNA replication and is a mainstay therapeutic for diverse cancers, particularly pancreatic ductal adenocarcinoma (PDAC). However, most tumors remain refractory to gemcitabine therapies. Here, to define the cancer cell response to gemcitabine, we performed genome-scale CRISPR-Cas9 chemical-genetic screens in PDAC cells and found selective loss of cell fitness upon disruption of the cytidine deaminases APOBEC3C and APOBEC3D. Following gemcitabine treatment, APOBEC3C and APOBEC3D promote DNA replication stress resistance and cell survival by deaminating cytidines in the nuclear genome to ensure DNA replication fork restart and repair in PDAC cells. We provide evidence that the chemical-genetic interaction between APOBEC3C or APOBEC3D and gemcitabine is absent in nontransformed cells but is recapitulated across different PDAC cell lines, in PDAC organoids and in PDAC xenografts. Thus, we uncover roles for APOBEC3C and APOBEC3D in DNA replication stress resistance and offer plausible targets for improving gemcitabine-based therapies for PDAC.

2.
Cancer Res ; 83(15): 2471-2479, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37289018

RESUMO

The emergence of resistance to targeted therapies restrains their efficacy. The development of rationally guided drug combinations could overcome this currently insurmountable clinical challenge. However, our limited understanding of the trajectories that drive the outgrowth of resistant clones in cancer cell populations precludes design of drug combinations to forestall resistance. Here, we propose an iterative treatment strategy coupled with genomic profiling and genome-wide CRISPR activation screening to systematically extract and define preexisting resistant subpopulations in an EGFR-driven lung cancer cell line. Integrating these modalities identifies several resistance mechanisms, including activation of YAP/TAZ signaling by WWTR1 amplification, and estimates the associated cellular fitness for mathematical population modeling. These observations led to the development of a combination therapy that eradicated resistant clones in large cancer cell line populations by exhausting the spectrum of genomic resistance mechanisms. However, a small fraction of cancer cells was able to enter a reversible nonproliferative state of drug tolerance. This subpopulation exhibited mesenchymal properties, NRF2 target gene expression, and sensitivity to ferroptotic cell death. Exploiting this induced collateral sensitivity by GPX4 inhibition clears drug-tolerant populations and leads to tumor cell eradication. Overall, this experimental in vitro data and theoretical modeling demonstrate why targeted mono- and dual therapies will likely fail in sufficiently large cancer cell populations to limit long-term efficacy. Our approach is not tied to a particular driver mechanism and can be used to systematically assess and ideally exhaust the resistance landscape for different cancer types to rationally design combination therapies. SIGNIFICANCE: Unraveling the trajectories of preexisting resistant and drug-tolerant persister cells facilitates the rational design of multidrug combination or sequential therapies, presenting an approach to explore for treating EGFR-mutant lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Transdução de Sinais , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Mutação
3.
Ann Surg ; 276(3): 450-462, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35972511

RESUMO

OBJECTIVE: To evaluate if patient-derived organoids (PDOs) may predict response to neoadjuvant (NAT) chemotherapy in patients with pancreatic adenocarcinoma. BACKGROUND: PDOs have been explored as a biomarker of therapy response and for personalized therapeutics in patients with pancreatic cancer. METHODS: During 2017-2021, patients were enrolled into an IRB-approved protocol and PDO cultures were established. PDOs of interest were analyzed through a translational pipeline incorporating molecular profiling and drug sensitivity testing. RESULTS: One hundred thirty-six samples, including both surgical resections and fine needle aspiration/biopsy from 117 patients with pancreatic cancer were collected. This biobank included diversity in stage, sex, age, and race, with minority populations representing 1/3 of collected cases (16% Black, 9% Asian, 7% Hispanic/Latino). Among surgical specimens, PDO generation was successful in 71% (15 of 21) of patients who had received NAT prior to sample collection and in 76% (39 of 51) of patients who were untreated with chemotherapy or radiation at the time of collection. Pathological response to NAT correlated with PDO chemotherapy response, particularly oxaliplatin. We demonstrated the feasibility of a rapid PDO drug screen and generated data within 7 days of tissue resection. CONCLUSION: Herein we report a large single-institution organoid biobank, including ethnic minority samples. The ability to establish PDOs from chemotherapy-naive and post-NAT tissue enables longitudinal PDO generation to assess dynamic chemotherapy sensitivity profiling. PDOs can be rapidly screened and further development of rapid screening may aid in the initial stratification of patients to the most active NAT regimen.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias Pancreáticas , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/cirurgia , Antineoplásicos/uso terapêutico , Etnicidade , Humanos , Grupos Minoritários , Terapia Neoadjuvante , Organoides , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas
4.
SLAS Discov ; 27(3): 159-166, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35306207

RESUMO

Recent technological advances have enabled 3D tissue culture models for fast and affordable HTS. We are no longer bound to 2D models for anti-cancer agent discovery, and it is clear that 3D tumor models provide more predictive data for translation of preclinical studies. In a previous study, we validated a microplate 3D spheroid-based technology for its compatibility with HTS automation. Small-scale screens using approved drugs have demonstrated that drug responses tend to differ between 2D and 3D cancer cell proliferation models. Here, we applied this 3D technology to the first ever large-scale screening effort completing HTS on over 150K molecules against primary pancreatic cancer cells. It is the first demonstration that a screening campaign of this magnitude using clinically relevant, ex-vivo 3D pancreatic tumor models established directly from biopsy, can be readily achieved in a fashion like traditional drug screen using 2D cell models. We identified four unique series of compounds with sub micromolar and even low nanomolar potency against a panel of patient derived pancreatic organoids. We also applied the 3D technology to test lead efficacy in autologous cancer associated fibroblasts and found a favorable profile for better efficacy in the cancer over wild type primary cells, an important milestone towards better leads. Importantly, the initial leads have been further validated in across multiple institutes with concordant outcomes. The work presented here represents the genesis of new small molecule leads found using 3D models of primary pancreas tumor cells.


Assuntos
Organoides , Neoplasias Pancreáticas , Proliferação de Células , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas
5.
Mol Cancer Ther ; 21(5): 821-830, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247925

RESUMO

NRG1 fusions are recurrent somatic genome alterations occurring across several tumor types, including invasive mucinous lung adenocarcinomas and pancreatic ductal adenocarcinomas and are potentially actionable genetic alterations in these cancers. We initially discovered CD74-NRG1 as the first NRG1 fusion in lung adenocarcinomas, and many additional fusion partners have since been identified. Here, we present the first CD74-NRG1 transgenic mouse model and provide evidence that ubiquitous expression of the CD74-NRG1 fusion protein in vivo leads to tumor development at high frequency. Furthermore, we show that ERBB2:ERBB3 heterodimerization is a mechanistic event in transformation by CD74-NRG1 binding physically to ERBB3 and that CD74-NRG1-expressing cells proliferate independent of supplemented NRG1 ligand. Thus, NRG1 gene fusions are recurrent driver oncogenes that cause oncogene dependency. Consistent with these findings, patients with NRG1 fusion-positive cancers respond to therapy targeting the ERBB2:ERBB3 receptors.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Animais , Carcinogênese/genética , Humanos , Camundongos , Neuregulina-1/genética , Oncogenes , Receptor ErbB-2/genética , Receptor ErbB-3/genética
6.
Cancer Res ; 82(7): 1174-1192, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35180770

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer with poor patient outcomes, highlighting the unmet clinical need for targeted therapies and better model systems. Here, we developed and comprehensively characterized a diverse biobank of normal and breast cancer patient-derived organoids (PDO) with a focus on TNBCs. PDOs recapitulated patient tumor intrinsic properties and a subset of PDOs can be propagated for long-term culture (LT-TNBC). Single cell profiling of PDOs identified cell types and gene candidates affiliated with different aspects of cancer progression. The LT-TNBC organoids exhibit signatures of aggressive MYC-driven, basal-like breast cancers and are largely comprised of luminal progenitor (LP)-like cells. The TNBC LP-like cells are distinct from normal LPs and exhibit hyperactivation of NOTCH and MYC signaling. Overall, this study validates TNBC PDOs as robust models for understanding breast cancer biology and progression, paving the way for personalized medicine and tailored treatment options. SIGNIFICANCE: A comprehensive analysis of patient-derived organoids of TNBC provides insights into cellular heterogeneity and mechanisms of tumorigenesis at the single-cell level.


Assuntos
Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Humanos , Organoides/patologia , Medicina de Precisão , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/patologia
7.
Cancer Drug Resist ; 4: 745-754, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532655

RESUMO

The ability to chemically modify monoclonal antibodies with the attachment of specific functional groups has opened up an enormous range of possibilities for the targeted treatment and diagnosis of cancer in the clinic. As the number of such antibody-based drug candidates has increased, so too has the need for more stringent and robust preclinical evaluation of their in vivo performance to maximize the likelihood that time, research effort, and money are only spent developing the most effective and promising candidate molecules for translation to the clinic. Concurrent with the development of antibody-drug conjugate (ADC) technology, several recent advances in preclinical research stand to greatly increase the experimental rigor by which promising candidate molecules can be evaluated. These include advances in preclinical tumor modeling with the development of patient-derived tumor organoid models that far better recapitulate many aspects of the human disease than conventional subcutaneous xenograft models. Such models are amenable to genetic manipulation, which will greatly improve our understanding of the relationship between ADC and antigen and stringently evaluate mechanisms of therapeutic response. Finally, tumor development is often not visible in these in vivo models. We discuss how the application of several preclinical molecular imaging techniques will greatly enhance the quality of experimental data, enabling quantitative pre- and post-treatment tumor measurements or the precise assessment of ADCs as effective diagnostics. In our opinion, when taken together, these advances in preclinical cancer research will greatly improve the identification of effective candidate ADC molecules with the best chance of clinical translation and cancer patient benefit.

8.
Nat Commun ; 12(1): 5505, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535668

RESUMO

Kinase inhibitors suppress the growth of oncogene driven cancer but also enforce the selection of treatment resistant cells that are thought to promote tumor relapse in patients. Here, we report transcriptomic and functional genomics analyses of cells and tumors within their microenvironment across different genotypes that persist during kinase inhibitor treatment. We uncover a conserved, MAPK/IRF1-mediated inflammatory response in tumors that undergo stemness- and senescence-associated reprogramming. In these tumor cells, activation of the innate immunity sensor RIG-I via its agonist IVT4, triggers an interferon and a pro-apoptotic response that synergize with concomitant kinase inhibition. In humanized lung cancer xenografts and a syngeneic Egfr-driven lung cancer model these effects translate into reduction of exhausted CD8+ T cells and robust tumor shrinkage. Overall, the mechanistic understanding of MAPK/IRF1-mediated intratumoral reprogramming may ultimately prolong the efficacy of targeted drugs in genetically defined cancer patients.


Assuntos
Proteína DEAD-box 58/metabolismo , Imunidade Inata , Inflamação/patologia , Sistema de Sinalização das MAP Quinases , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptores Imunológicos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citocinas/metabolismo , Receptores ErbB/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Evasão da Resposta Imune/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Fator Regulador 1 de Interferon/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/patologia , Oncogenes , Transdução de Sinais/efeitos dos fármacos
9.
J Biomol Tech ; 32(3): 228-275, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-35136384

RESUMO

As the second year of the COVID-19 pandemic begins, it remains clear that a massive increase in the ability to test for SARS-CoV-2 infections in a myriad of settings is critical to controlling the pandemic and to preparing for future outbreaks. The current gold standard for molecular diagnostics is the polymerase chain reaction (PCR), but the extraordinary and unmet demand for testing in a variety of environments means that both complementary and supplementary testing solutions are still needed. This review highlights the role that loop-mediated isothermal amplification (LAMP) has had in filling this global testing need, providing a faster and easier means of testing, and what it can do for future applications, pathogens, and the preparation for future outbreaks. This review describes the current state of the art for research of LAMP-based SARS-CoV-2 testing, as well as its implications for other pathogens and testing. The authors represent the global LAMP (gLAMP) Consortium, an international research collective, which has regularly met to share their experiences on LAMP deployment and best practices; sections are devoted to all aspects of LAMP testing, including preanalytic sample processing, target amplification, and amplicon detection, then the hardware and software required for deployment are discussed, and finally, a summary of the current regulatory landscape is provided. Included as well are a series of first-person accounts of LAMP method development and deployment. The final discussion section provides the reader with a distillation of the most validated testing methods and their paths to implementation. This review also aims to provide practical information and insight for a range of audiences: for a research audience, to help accelerate research through sharing of best practices; for an implementation audience, to help get testing up and running quickly; and for a public health, clinical, and policy audience, to help convey the breadth of the effect that LAMP methods have to offer.


Assuntos
COVID-19 , Técnicas de Amplificação de Ácido Nucleico , SARS-CoV-2 , COVID-19/diagnóstico , Teste de Ácido Nucleico para COVID-19 , Humanos , Técnicas de Diagnóstico Molecular , Pandemias , RNA Viral , SARS-CoV-2/isolamento & purificação
10.
Clin Gastroenterol Hepatol ; 19(4): 845-847, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32119924

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has one of the poorest prognoses of all malignancies, with a 5-year survival rate <8%.1,2 Suspicious lesions are typically diagnosed via endoscopic ultrasound-guided fine-needle aspiration or endoscopic ultrasound-guided fine-needle biopsy (EUS-FNB).3 Fewer needle passes decreases the risk of postprocedure complications, including pancreatitis and hemorrhage, while allowing additional needle passes to be used for adjuvant tissue testing, such as organoid creation and DNA sequencing.


Assuntos
Adenocarcinoma , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico/métodos , Neoplasias Pancreáticas , Adenocarcinoma/diagnóstico , Humanos , Organoides , Neoplasias Pancreáticas/diagnóstico
11.
Clin Cancer Res ; 27(1): 226-236, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33093149

RESUMO

PURPOSE: A subset of pancreatic ductal adenocarcinomas (PDACs) is highly resistant to systemic chemotherapy, but no markers are available in clinical settings to identify this subset. We hypothesized that a glycan biomarker for PDACs called sialylated tumor-related antigen (sTRA) could be used for this purpose. EXPERIMENTAL DESIGN: We tested for differences between PDACs classified by glycan expression in multiple systems: sets of cell lines, organoids, and isogenic cell lines; primary tumors; and blood plasma from human subjects. RESULTS: The sTRA-expressing models tended to have stem-like gene expression and the capacity for mesenchymal differentiation, in contrast to the nonexpressing models. The sTRA cell lines also had significantly increased resistance to seven different chemotherapeutics commonly used against pancreatic cancer. Patients with primary tumors that were positive for a gene expression classifier for sTRA received no statistically significant benefit from adjuvant chemotherapy, in contrast to those negative for the signature. In another cohort, based on direct measurements of sTRA in tissue microarrays, the patients who were high in sTRA again had no statistically significant benefit from adjuvant chemotherapy. Furthermore, a blood plasma test for the sTRA glycan identified the PDACs that showed rapid relapse following neoadjuvant chemotherapy. CONCLUSIONS: This research demonstrates that a glycan biomarker could have value to detect chemotherapy-resistant PDAC in clinical settings. This capability could aid in the development of stratified treatment plans and facilitate biomarker-guided trials targeting resistant PDAC.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/sangue , Carcinoma Ductal Pancreático/tratamento farmacológico , Recidiva Local de Neoplasia/epidemiologia , Neoplasias Pancreáticas/tratamento farmacológico , Antígenos Glicosídicos Associados a Tumores/sangue , Antígenos Glicosídicos Associados a Tumores/imunologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/imunologia , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/mortalidade , Linhagem Celular Tumoral , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos/imunologia , Humanos , Concentração Inibidora 50 , Biópsia Líquida , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/prevenção & controle , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/mortalidade , Polissacarídeos/sangue , Polissacarídeos/imunologia , Medição de Risco/métodos
12.
Gastroenterology ; 160(1): 362-377.e13, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33039466

RESUMO

BACKGROUND & AIMS: Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress, and novel therapeutic response in PC to develop a biomarker-driven therapeutic strategy targeting DDR and replication stress in PC. METHODS: We interrogated the transcriptome, genome, proteome, and functional characteristics of 61 novel PC patient-derived cell lines to define novel therapeutic strategies targeting DDR and replication stress. Validation was done in patient-derived xenografts and human PC organoids. RESULTS: Patient-derived cell lines faithfully recapitulate the epithelial component of pancreatic tumors, including previously described molecular subtypes. Biomarkers of DDR deficiency, including a novel signature of homologous recombination deficiency, cosegregates with response to platinum (P < .001) and PARP inhibitor therapy (P < .001) in vitro and in vivo. We generated a novel signature of replication stress that predicts response to ATR (P < .018) and WEE1 inhibitor (P < .029) treatment in both cell lines and human PC organoids. Replication stress was enriched in the squamous subtype of PC (P < .001) but was not associated with DDR deficiency. CONCLUSIONS: Replication stress and DDR deficiency are independent of each other, creating opportunities for therapy in DDR-proficient PC and after platinum therapy.


Assuntos
Adenocarcinoma/patologia , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Neoplasias Pancreáticas/patologia , Adenocarcinoma/genética , Adenocarcinoma/terapia , Biomarcadores , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Humanos , Terapia de Alvo Molecular , Organoides , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Ann Surg ; 272(3): 427-435, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32657929

RESUMO

OBJECTIVE: PDAC patients who undergo surgical resection and receive effective chemotherapy have the best chance of long-term survival. Unfortunately, we lack predictive biomarkers to guide optimal systemic treatment. Ex-vivo generation of PDO for pharmacotyping may serve as predictive biomarkers in PDAC. The goal of the current study was to demonstrate the clinical feasibility of a PDO-guided precision medicine framework of care. METHODS: PDO cultures were established from surgical specimens and endoscopic biopsies, expanded in Matrigel, and used for high-throughput drug testing (pharmacotyping). Efficacy of standard-of-care chemotherapeutics was assessed by measuring cell viability after drug exposure. RESULTS: A framework for rapid pharmacotyping of PDOs was established across a multi-institutional consortium of academic medical centers. Specimens obtained remotely and shipped to a central biorepository maintain viability and allowed generation of PDOs with 77% success. Early cultures maintain the clonal heterogeneity seen in PDAC with similar phenotypes (cystic-solid). Late cultures exhibit a dominant clone with a pharmacotyping profile similar to early passages. The biomass required for accurate pharmacotyping can be minimized by leveraging a high-throughput technology. Twenty-nine cultures were pharmacotyped to derive a population distribution of chemotherapeutic sensitivity at our center. Pharmacotyping rapidly-expanded PDOs was completed in a median of 48 (range 18-102) days. CONCLUSIONS: Rapid development of PDOs from patients undergoing surgery for PDAC is eminently feasible within the perioperative recovery period, enabling the potential for pharmacotyping to guide postoperative adjuvant chemotherapeutic selection. Studies validating PDOs as a promising predictive biomarker are ongoing.


Assuntos
Antineoplásicos/farmacologia , Estadiamento de Neoplasias/métodos , Organoides/patologia , Neoplasias Pancreáticas/terapia , Guias de Prática Clínica como Assunto , Medicina de Precisão/métodos , Quimioterapia Adjuvante , Humanos , Pancreatectomia/métodos , Neoplasias Pancreáticas/diagnóstico , Células Tumorais Cultivadas
14.
Cancer Discov ; 10(10): 1566-1589, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32703770

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most lethal common malignancy, with little improvement in patient outcomes over the past decades. Recently, subtypes of pancreatic cancer with different prognoses have been elaborated; however, the inability to model these subtypes has precluded mechanistic investigation of their origins. Here, we present a xenotransplantation model of PDAC in which neoplasms originate from patient-derived organoids injected directly into murine pancreatic ducts. Our model enables distinction of the two main PDAC subtypes: intraepithelial neoplasms from this model progress in an indolent or invasive manner representing the classical or basal-like subtypes of PDAC, respectively. Parameters that influence PDAC subtype specification in this intraductal model include cell plasticity and hyperactivation of the RAS pathway. Finally, through intratumoral dissection and the direct manipulation of RAS gene dosage, we identify a suite of RAS-regulated secreted and membrane-bound proteins that may represent potential candidates for therapeutic intervention in patients with PDAC. SIGNIFICANCE: Accurate modeling of the molecular subtypes of pancreatic cancer is crucial to facilitate the generation of effective therapies. We report the development of an intraductal organoid transplantation model of pancreatic cancer that models the progressive switching of subtypes, and identify stochastic and RAS-driven mechanisms that determine subtype specification.See related commentary by Pickering and Morton, p. 1448.This article is highlighted in the In This Issue feature, p. 1426.


Assuntos
Adenocarcinoma/genética , Regulação Neoplásica da Expressão Gênica/genética , Ductos Pancreáticos/transplante , Animais , Carcinoma Ductal Pancreático , Modelos Animais de Doenças , Humanos , Camundongos , Prognóstico
15.
Expert Opin Drug Metab Toxicol ; 15(7): 541-552, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31241371

RESUMO

Introduction: Pancreatic cancer (PC) remains a disease with a dismal prognosis. Despite accounting for only 3% of cancer diagnosis, 7% of all cancer deaths in the United States are from PC. This is explained by many being diagnosed with late-stage disease and the cancer's resistance to chemotherapy. Since 1996 there have only been two upfront regimens found to be superior to gemcitabine, FOLFIRINOX (5-fluorouracil/leucovorin and oxaliplatin) and gemcitabine plus nab-paclitaxel. Areas covered: Clinical pharmacology of newer agents that are either approved or being investigated in the management of PC. Knowledge of their pharmacokinetics, pharmacodynamics, and pharmacogenetics can be used to predict outcomes for specific patient populations. Drugs discussed include nanoliposomal irinotecan, pegvorhyaluronidase alfa, poly (ADP-ribose) polymerase enzyme inhibitors, larotrectinib, and napabucasin. Expert opinion: PC is a heterogeneous disease and outcomes are likely to improve as better predictive models of an individual's response to different therapies are developed. This may be best accomplished through phase 0 studies and the use of tumor organoid models grown from initial biopsies or resected tissue. The genetic and physical makeup of the tumor as well as the functional characterization in patient-derived organoids (PDOs), can help guide which agents may be most efficacious or toxic.


Assuntos
Antineoplásicos/administração & dosagem , Desenvolvimento de Medicamentos/métodos , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistencia a Medicamentos Antineoplásicos , Humanos , Estadiamento de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Farmacogenética , Prognóstico
16.
Curr Opin Genet Dev ; 54: 7-11, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30844513

RESUMO

Despite recent advances in the treatment of cancer, pancreatic ductal adenocarcinoma (PDAC) still retains the worst survival rate of common malignancies. Late diagnosis and lack of curative therapeutic options are the most pressing clinical problems for this disease. Therefore, there is a need for patient models and biomarkers that can be applied in the clinic to identify the most effective therapy for a patient. Pancreatic ductal organoids are ex-vivo models of PDAC that can be established from very small biopsies, enabling the study of localized, advanced, and metastatic patients. Organoids models have been applied to pancreatic cancer research and offer a promising platform for precision medicine approaches.


Assuntos
Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Medicina de Precisão , Pesquisa Translacional Biomédica , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/terapia , Humanos , Metástase Neoplásica , Organoides/metabolismo , Organoides/patologia , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia
17.
Artigo em Inglês | MEDLINE | ID: mdl-32914023

RESUMO

PURPOSE: Third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are effective in acquired resistance (AR) to early-generation EGFR TKIs in EGFR-mutant lung cancer. However, efficacy is marked by interindividual heterogeneity. We present the molecular profiles of pretreatment and post-treatment samples from patients treated with third-generation EGFR TKIs and their impact on treatment outcomes. METHODS: Using the databases of two lung cancer networks and two lung cancer centers, we molecularly characterized 124 patients with EGFR p.T790M-positive AR to early-generation EGFR TKIs. In 56 patients, correlative analyses of third-generation EGFR TKI treatment outcomes and molecular characteristics were feasible. In addition, matched post-treatment biopsy samples were collected for 29 patients with progression to third-generation EGFR TKIs. RESULTS: Co-occurring genetic aberrations were found in 74.4% of EGFR p.T790-positive samples (n = 124). Mutations in TP53 were the most frequent aberrations detected (44.5%; n = 53) and had no significant impact on third-generation EGFR TKI treatment. Mesenchymal-epithelial transition factor (MET) amplifications were found in 5% of samples (n = 6) and reduced efficacy of third-generation EGFR TKIs significantly (eg, median progression-free survival, 1.0 months; 95% CI, 0.37 to 1.72 v 8.2 months; 95% CI, 1.69 to 14.77 months; P ≤ .001). Genetic changes in the 29 samples with AR to third-generation EGFR TKIs were found in EGFR (eg, p.T790M loss, acquisition of p.C797S or p.G724S) or in other genes (eg, MET amplification, KRAS mutations). CONCLUSION: Additional genetic aberrations are frequent in EGFR-mutant lung cancer and may mediate innate and AR to third-generation EGFR TKIs. MET amplification was strongly associated with primary treatment failure and was a common mechanism of AR to third-generation EGFR TKIs. Thus, combining EGFR inhibitors with TKIs targeting common mechanisms of resistance may delay AR.

18.
Nat Commun ; 9(1): 4655, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405134

RESUMO

The emergence of acquired resistance against targeted drugs remains a major clinical challenge in lung adenocarcinoma patients. In a subgroup of these patients we identified an association between selection of EGFRT790M-negative but EGFRG724S-positive subclones and osimertinib resistance. We demonstrate that EGFRG724S limits the activity of third-generation EGFR inhibitors both in vitro and in vivo. Structural analyses and computational modeling indicate that EGFRG724S mutations may induce a conformation of the glycine-rich loop, which is incompatible with the binding of third-generation TKIs. Systematic inhibitor screening and in-depth kinetic profiling validate these findings and show that second-generation EGFR inhibitors retain kinase affinity and overcome EGFRG724S-mediated resistance. In the case of afatinib this profile translates into a robust reduction of colony formation and tumor growth of EGFRG724S-driven cells. Our data provide a mechanistic basis for the osimertinib-induced selection of EGFRG724S-mutant clones and a rationale to treat these patients with clinically approved second-generation EGFR inhibitors.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Acrilamidas , Compostos de Anilina , Animais , Linhagem Celular Tumoral , Progressão da Doença , Receptores ErbB/química , Receptores ErbB/metabolismo , Feminino , Humanos , Cinética , Camundongos , Camundongos Nus , Mutação/genética , Células NIH 3T3 , Piperazinas/química , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Inibidores de Proteínas Quinases/química
19.
Cancer Discov ; 8(9): 1112-1129, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29853643

RESUMO

Pancreatic cancer is the most lethal common solid malignancy. Systemic therapies are often ineffective, and predictive biomarkers to guide treatment are urgently needed. We generated a pancreatic cancer patient-derived organoid (PDO) library that recapitulates the mutational spectrum and transcriptional subtypes of primary pancreatic cancer. New driver oncogenes were nominated and transcriptomic analyses revealed unique clusters. PDOs exhibited heterogeneous responses to standard-of-care chemotherapeutics and investigational agents. In a case study manner, we found that PDO therapeutic profiles paralleled patient outcomes and that PDOs enabled longitudinal assessment of chemosensitivity and evaluation of synchronous metastases. We derived organoid-based gene expression signatures of chemosensitivity that predicted improved responses for many patients to chemotherapy in both the adjuvant and advanced disease settings. Finally, we nominated alternative treatment strategies for chemorefractory PDOs using targeted agent therapeutic profiling. We propose that combined molecular and therapeutic profiling of PDOs may predict clinical response and enable prospective therapeutic selection.Significance: New approaches to prioritize treatment strategies are urgently needed to improve survival and quality of life for patients with pancreatic cancer. Combined genomic, transcriptomic, and therapeutic profiling of PDOs can identify molecular and functional subtypes of pancreatic cancer, predict therapeutic responses, and facilitate precision medicine for patients with pancreatic cancer. Cancer Discov; 8(9); 1112-29. ©2018 AACR.See related commentary by Collisson, p. 1062This article is highlighted in the In This Issue feature, p. 1047.


Assuntos
Antineoplásicos/farmacologia , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/efeitos dos fármacos , Organoides/efeitos dos fármacos , Neoplasias Pancreáticas/patologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Organoides/química , Organoides/citologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Medicina de Precisão , Estudos Prospectivos , Análise de Sequência de RNA , Padrão de Cuidado , Células Tumorais Cultivadas
20.
Dev Cell ; 44(6): 709-724.e6, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29551561

RESUMO

Recurrent mutations in chromatin modifiers are specifically prevalent in adolescent or adult patients with Sonic hedgehog-associated medulloblastoma (SHH MB). Here, we report that mutations in the acetyltransferase CREBBP have opposing effects during the development of the cerebellum, the primary site of origin of SHH MB. Our data reveal that loss of Crebbp in cerebellar granule neuron progenitors (GNPs) during embryonic development of mice compromises GNP development, in part by downregulation of brain-derived neurotrophic factor (Bdnf). Interestingly, concomitant cerebellar hypoplasia was also observed in patients with Rubinstein-Taybi syndrome, a congenital disorder caused by germline mutations of CREBBP. By contrast, loss of Crebbp in GNPs during postnatal development synergizes with oncogenic activation of SHH signaling to drive MB growth, thereby explaining the enrichment of somatic CREBBP mutations in SHH MB of adult patients. Together, our data provide insights into time-sensitive consequences of CREBBP mutations and corresponding associations with human diseases.


Assuntos
Acetiltransferases/metabolismo , Proteína de Ligação a CREB/metabolismo , Proteína de Ligação a CREB/fisiologia , Proteínas Hedgehog/metabolismo , Meduloblastoma/patologia , Mutação , Síndrome de Rubinstein-Taybi/patologia , Adulto , Animais , Proteína de Ligação a CREB/genética , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Feminino , Proteínas Hedgehog/genética , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo , Camundongos , Camundongos Knockout , Neurônios , Fenótipo , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...